Factor H–Related Protein 5 Interacts with Pentraxin 3 and the Extracellular Matrix and Modulates Complement Activation
نویسندگان
چکیده
The physiological roles of the factor H (FH)-related proteins are controversial and poorly understood. Based on genetic studies, FH-related protein 5 (CFHR5) is implicated in glomerular diseases, such as atypical hemolytic uremic syndrome, dense deposit disease, and CFHR5 nephropathy. CFHR5 was also identified in glomerular immune deposits at the protein level. For CFHR5, weak complement regulatory activity and competition for C3b binding with the plasma complement inhibitor FH have been reported, but its function remains elusive. In this study, we identify pentraxin 3 (PTX3) as a novel ligand of CFHR5. Binding of native CFHR5 to PTX3 was detected in human plasma and the interaction was characterized using recombinant proteins. The binding of PTX3 to CFHR5 is of ∼2-fold higher affinity compared with that of FH. CFHR5 dose-dependently inhibited FH binding to PTX3 and also to the monomeric, denatured form of the short pentraxin C-reactive protein. Binding of PTX3 to CFHR5 resulted in increased C1q binding. Additionally, CFHR5 bound to extracellular matrix in vitro in a dose-dependent manner and competed with FH for binding. Altogether, CFHR5 reduced FH binding and its cofactor activity on pentraxins and the extracellular matrix, while at the same time allowed for enhanced C1q binding. Furthermore, CFHR5 allowed formation of the alternative pathway C3 convertase and supported complement activation. Thus, CFHR5 may locally enhance complement activation via interference with the complement-inhibiting function of FH, by enhancement of C1q binding, and by activating complement, thereby contributing to glomerular disease.
منابع مشابه
Human Pentraxin 3 Binds to the Complement Regulator C4b-Binding Protein
The long pentraxin 3 (PTX3) is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor ...
متن کاملAtypical hemolytic uremic syndrome-associated variants and autoantibodies impair binding of factor h and factor h-related protein 1 to pentraxin 3.
Atypical hemolytic uremic syndrome (aHUS) is a renal disease associated with complement alternative pathway dysregulation and is characterized by endothelial injury. Pentraxin 3 (PTX3) is a soluble pattern recognition molecule expressed by endothelial cells and upregulated under inflammatory conditions. PTX3 activates complement, but it also binds the complement inhibitor factor H. In this stud...
متن کاملThe Murine Factor H-Related Protein FHR-B Promotes Complement Activation
Factor H-related (FHR) proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH). While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part...
متن کاملAn engineered construct combining complement regulatory and surface-recognition domains represents a minimal-size functional factor H.
Complement is an essential humoral component of innate immunity; however, its inappropriate activation leads to pathology. Polymorphisms, mutations, and autoantibodies affecting factor H (FH), a major regulator of the alternative complement pathway, are associated with various diseases, including age-related macular degeneration, atypical hemolytic uremic syndrome, and C3 glomerulopathies. Rest...
متن کاملComplement inhibitor C4b-binding protein interacts directly with small glycoproteins of the extracellular matrix.
Components derived from cartilage have been suggested to maintain the inflammation in joints in arthritis. Small leucine-rich repeat proteins (SLRPs) are structural components of cartilage important in organizing the meshwork of extracellular matrix components. It has recently been shown that the SLRP fibromodulin interacts with complement initiator C1q, leading to complement activation. The co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 194 شماره
صفحات -
تاریخ انتشار 2015